1. Big O Time Complexity Chart
  2. Algorithm Time Complexity Cheat Sheet

An algorithm is said to have a quasilinear time complexity when each operation in the input data have a logarithm time complexity. It is commonly seen in sorting algorithms (e.g. Mergesort, timsort, heapsort). For example: for each value in the data1 (O(n)) use the binary search (O(log n)) to search the same value in data2.

Policies

Participation

  1. Know Thy Complexities! This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science. When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn't be stumped when asked about them.
  2. Data Structures Data Structure Time Complexity Space Complex ity Average Worst Worst. Big-O Algorithm Complexity Cheat Sheet Author: Hasindu Gamaarachchi.

Students are expected to attend and contribute regularly in class. This means answering questions in class, participating in discussions, and helping other students.

Foreseeable absences should be discussed with the instructor ahead of time.

Classroom Recording

Notre Dame has implemented an Echo360 classroom recording system. This system allows us to record and distribute lectures to you in a secure environment. You can watch these recordings on your computer, tablet, or smartphone. The recordings can be accessed within Sakai. Look for the tool labeled 'Echo360 ALP' on the left hand side of the course.

Because we will be recording in the classroom and/or using an active learning environment, your questions and comments may be recorded. (Video recordings typically only capture the front of the classroom.) If you have any concerns about your voice or image being recorded, please speak to me to determine an alternative means of participating. No content will be shared with individuals outside of your course without your permission except for faculty and staff that need access for support or specific academic purposes.

O n cheat sheet

These recordings are jointly copyrighted by the University of Notre Dame and your instructor. Posting them to other websites, including YouTube, Facebook, Vimeo, or elsewhere without express, written permission may result in disciplinary action and possible civil prosecution.

Late Work

In the case of a serious illness or other excused absence, as defined by university policies, coursework submissions will be accepted late by the same number of days as the excused absence.

Otherwise, there is a penalty of 25% per day late (except where noted). You may submit some parts of an assignment on time and some parts late. Each submission must clearly state which parts it contains; no part can be submitted more than once.

Honor Code

All work that you submit must be your own. Collaboration is encouraged but must be disclosed by all parties. Print or online resources are allowed, but must be disclosed. However, you may not look at solutions from other current or past students, or any other source.

Students with Disabilities

Big 0 cheat sheet

Any student who has a documented disability and is registered with Disability Services should speak with the professor as soon as possible regarding accommodations. Students who are not registered should contact the Office of Disability Services.


We summarize the performance characteristics of classic algorithms anddata structures for sorting, priority queues, symbol tables, and graph processing.

We also summarize some of the mathematics useful in the analysis of algorithms, including commonly encountered functions;useful formulas and appoximations; properties of logarithms;asymptotic notations; and solutions to divide-and-conquer recurrences.


Sorting.

The table below summarizes the number of compares for a variety of sortingalgorithms, as implemented in this textbook.It includes leading constants but ignores lower-order terms.
ALGORITHMCODEIN PLACESTABLEBESTAVERAGEWORSTREMARKS
selection sortSelection.java½ n 2½ n 2½ n 2n exchanges;
quadratic in best case
insertion sortInsertion.javan¼ n 2½ n 2use for small or
partially-sorted arrays
bubble sortBubble.javan½ n 2½ n 2rarely useful;
use insertion sort instead
shellsortShell.javan log3nunknownc n 3/2tight code;
subquadratic
mergesortMerge.java½ n lg nn lg nn lg nn log n guarantee;
stable
quicksortQuick.javan lg n2 n ln n½ n 2n log n probabilistic guarantee;
fastest in practice
heapsortHeap.javan2 n lg n2 n lg nn log n guarantee;
in place
n lg n if all keys are distinct


Priority queues.

The table below summarizes the order of growth of the running time ofoperations for a variety of priority queues, as implemented in this textbook.It ignores leading constants and lower-order terms.Except as noted, all running times are worst-case running times.
DATA STRUCTURECODEINSERTDEL-MINMINDEC-KEYDELETEMERGE
arrayBruteIndexMinPQ.java1nn11n
binary heapIndexMinPQ.javalog nlog n1log nlog nn
d-way heapIndexMultiwayMinPQ.javalogdnd logdn1logdnd logdnn
binomial heapIndexBinomialMinPQ.java1log n1log nlog nlog n
Fibonacci heapIndexFibonacciMinPQ.java1log n11 log n1
amortized guarantee


Symbol tables.

The table below summarizes the order of growth of the running time ofoperations for a variety of symbol tables, as implemented in this textbook.It ignores leading constants and lower-order terms.
worst caseaverage case
DATA STRUCTURECODESEARCHINSERTDELETESEARCHINSERTDELETE
sequential search
(in an unordered list)
SequentialSearchST.javannnnnn
binary search
(in a sorted array)
BinarySearchST.javalog nnnlog nnn
binary search tree
(unbalanced)
BST.javannnlog nlog nsqrt(n)
red-black BST
(left-leaning)
RedBlackBST.javalog nlog nlog nlog nlog nlog n
AVL
AVLTreeST.javalog nlog nlog nlog nlog nlog n
hash table
(separate-chaining)
SeparateChainingHashST.javannn1 1 1
hash table
(linear-probing)
LinearProbingHashST.javannn1 1 1
uniform hashing assumption


Graph processing.

The table below summarizes the order of growth of the worst-case running time and memory usage (beyond the memory for the graph itself)for a variety of graph-processing problems, as implemented in this textbook.It ignores leading constants and lower-order terms.All running times are worst-case running times.


PROBLEMALGORITHMCODETIMESPACE
pathDFSDepthFirstPaths.javaE + VV
shortest path (fewest edges)BFSBreadthFirstPaths.javaE + VV
cycleDFSCycle.javaE + VV
directed pathDFSDepthFirstDirectedPaths.javaE + VV
shortest directed path (fewest edges)BFSBreadthFirstDirectedPaths.javaE + VV
directed cycleDFSDirectedCycle.javaE + VV
topological sortDFSTopological.javaE + VV
bipartiteness / odd cycleDFSBipartite.javaE + VV
connected componentsDFSCC.javaE + VV
strong componentsKosaraju–SharirKosarajuSharirSCC.javaE + VV
strong componentsTarjanTarjanSCC.javaE + VV
strong componentsGabowGabowSCC.javaE + VV
Eulerian cycleDFSEulerianCycle.javaE + VE + V
directed Eulerian cycleDFSDirectedEulerianCycle.javaE + VV
transitive closureDFSTransitiveClosure.javaV (E + V)V 2
minimum spanning treeKruskalKruskalMST.javaE log EE + V
minimum spanning treePrimPrimMST.javaE log VV
minimum spanning treeBoruvkaBoruvkaMST.javaE log VV
shortest paths (nonnegative weights)DijkstraDijkstraSP.javaE log VV
shortest paths (no negative cycles)Bellman–FordBellmanFordSP.javaV (V + E)V
shortest paths (no cycles)topological sortAcyclicSP.javaV + EV
all-pairs shortest pathsFloyd–WarshallFloydWarshall.javaV 3V 2
maxflow–mincutFord–FulkersonFordFulkerson.javaEV (E + V)V
bipartite matchingHopcroft–KarpHopcroftKarp.javaV ½ (E + V)V
assignment problemsuccessive shortest pathsAssignmentProblem.javan 3 log nn 2


Commonly encountered functions.

Here are some functions that are commonly encounteredwhen analyzing algorithms.
FUNCTIONNOTATIONDEFINITION
floor( lfloor x rfloor )greatest integer (; le ; x)
ceiling( lceil x rceil )smallest integer (; ge ; x)
binary logarithm( lg x) or (log_2 x)(y) such that (2^{,y} = x)
natural logarithm( ln x) or (log_e x )(y) such that (e^{,y} = x)
common logarithm( log_{10} x )(y) such that (10^{,y} = x)
iterated binary logarithm( lg^* x )(0) if (x le 1;; 1 + lg^*(lg x)) otherwise
harmonic number( H_n )(1 + 1/2 + 1/3 + ldots + 1/n)
factorial( n! )(1 times 2 times 3 times ldots times n)
binomial coefficient( n choose k )( frac{n!}{k! ; (n-k)!})


Useful formulas and approximations.

Here are some useful formulas for approximations that are widely used in the analysis of algorithms.
  • Harmonic sum: (1 + 1/2 + 1/3 + ldots + 1/n sim ln n)
  • Triangular sum: (1 + 2 + 3 + ldots + n = n , (n+1) , / , 2 sim n^2 ,/, 2)
  • Sum of squares: (1^2 + 2^2 + 3^2 + ldots + n^2 sim n^3 , / , 3)
  • Geometric sum: If (r neq 1), then(1 + r + r^2 + r^3 + ldots + r^n = (r^{n+1} - 1) ; /; (r - 1))
    • (r = 1/2): (1 + 1/2 + 1/4 + 1/8 + ldots + 1/2^n sim 2)
    • (r = 2): (1 + 2 + 4 + 8 + ldots + n/2 + n = 2n - 1 sim 2n), when (n) is a power of 2
  • Stirling's approximation: (lg (n!) = lg 1 + lg 2 + lg 3 + ldots + lg n sim n lg n)
  • Exponential: ((1 + 1/n)^n sim e; ;;(1 - 1/n)^n sim 1 / e)
  • Binomial coefficients: ({n choose k} sim n^k , / , k!) when (k) is a small constant
  • Approximate sum by integral: If (f(x)) is a monotonically increasing function, then( displaystyle int_0^n f(x) ; dx ; le ; sum_{i=1}^n ; f(i) ; le ; int_1^{n+1} f(x) ; dx)


Big O Time Complexity Chart

Properties of logarithms.

Sheet
  • Definition: (log_b a = c) means (b^c = a).We refer to (b) as the base of the logarithm.
  • Special cases: (log_b b = 1,; log_b 1 = 0 )
  • Inverse of exponential: (b^{log_b x} = x)
  • Product: (log_b (x times y) = log_b x + log_b y )
  • Division: (log_b (x div y) = log_b x - log_b y )
  • Finite product: (log_b ( x_1 times x_2 times ldots times x_n) ; = ; log_b x_1 + log_b x_2 + ldots + log_b x_n)
  • Changing bases: (log_b x = log_c x ; / ; log_c b )
  • Rearranging exponents: (x^{log_b y} = y^{log_b x})
  • Exponentiation: (log_b (x^y) = y log_b x )


Aymptotic notations: definitions.

NAMENOTATIONDESCRIPTIONDEFINITION
Tilde(f(n) sim g(n); )(f(n)) is equal to (g(n)) asymptotically
(including constant factors)
( ; displaystyle lim_{n to infty} frac{f(n)}{g(n)} = 1)
Big Oh(f(n)) is (O(g(n)))(f(n)) is bounded above by (g(n)) asymptotically
(ignoring constant factors)
there exist constants (c > 0) and (n_0 ge 0) such that (0 le f(n) le c cdot g(n)) forall (n ge n_0)
Big Omega(f(n)) is (Omega(g(n)))(f(n)) is bounded below by (g(n)) asymptotically
(ignoring constant factors)
( g(n) ) is (O(f(n)))
Big Theta(f(n)) is (Theta(g(n)))(f(n)) is bounded above and below by (g(n)) asymptotically
(ignoring constant factors)
( f(n) ) is both (O(g(n))) and (Omega(g(n)))
Little oh(f(n)) is (o(g(n)))(f(n)) is dominated by (g(n)) asymptotically
(ignoring constant factors)
( ; displaystyle lim_{n to infty} frac{f(n)}{g(n)} = 0)
Little omega(f(n)) is (omega(g(n)))(f(n)) dominates (g(n)) asymptotically
(ignoring constant factors)
( g(n) ) is (o(f(n)))


Common orders of growth.

NAMENOTATIONEXAMPLECODE FRAGMENT
Constant(O(1))array access
arithmetic operation
function call
Logarithmic(O(log n))binary search in a sorted array
insert in a binary heap
search in a red–black tree
Linear(O(n))sequential search
grade-school addition
BFPRT median finding
Linearithmic(O(n log n))mergesort
heapsort
fast Fourier transform
Quadratic(O(n^2))enumerate all pairs
insertion sort
grade-school multiplication
Cubic(O(n^3))enumerate all triples
Floyd–Warshall
grade-school matrix multiplication
Polynomial(O(n^c))ellipsoid algorithm for LP
AKS primality algorithm
Edmond's matching algorithm
Exponential(2^{O(n^c)})enumerating all subsets
enumerating all permutations
backtracing search


Asymptotic notations: properties.

  • Reflexivity: (f(n)) is (O(f(n))).
  • Constants: If (f(n)) is (O(g(n))) and ( c > 0 ),then (c cdot f(n)) is (O(g(n)))).
  • Products: If (f_1(n)) is (O(g_1(n))) and ( f_2(n) ) is (O(g_2(n)))),then (f_1(n) cdot f_2(n)) is (O(g_1(n) cdot g_2(n)))).
  • Sums: If (f_1(n)) is (O(g_1(n))) and ( f_2(n) ) is (O(g_2(n)))),then (f_1(n) + f_2(n)) is (O(max { g_1(n) , g_2(n) })).
  • Transitivity: If (f(n)) is (O(g(n))) and ( g(n) ) is (O(h(n))),then ( f(n) ) is (O(h(n))).
  • Polynomials: Let (f(n) = a_0 + a_1 n + ldots + a_d n^d) with(a_d > 0). Then, ( f(n) ) is (Theta(n^d)).
  • Logarithms and polynomials: ( log_b n ) is (O(n^d)) for every ( b > 0) and every ( d > 0 ).
  • Exponentials and polynomials: ( n^d ) is (O(r^n)) for every ( r > 0) and every ( d > 0 ).
  • Factorials: ( n! ) is ( 2^{Theta(n log n)} ).
  • Limits: If ( ; displaystyle lim_{n to infty} frac{f(n)}{g(n)} = c)for some constant ( 0 < c < infty), then(f(n)) is (Theta(g(n))).
  • Limits: If ( ; displaystyle lim_{n to infty} frac{f(n)}{g(n)} = 0),then (f(n)) is (O(g(n))) but not (Theta(g(n))).
  • Limits: If ( ; displaystyle lim_{n to infty} frac{f(n)}{g(n)} = infty),then (f(n)) is (Omega(g(n))) but not (O(g(n))).


Here are some examples.

FUNCTION(o(n^2))(O(n^2))(Theta(n^2))(Omega(n^2))(omega(n^2))(sim 2 n^2)(sim 4 n^2)
(log_2 n)
(10n + 45)
(2n^2 + 45n + 12)
(4n^2 - 2 sqrt{n})
(3n^3)
(2^n)


Divide-and-conquer recurrences.

For each of the following recurrences we assume (T(1) = 0)and that (n,/,2) means either (lfloor n,/,2 rfloor) or(lceil n,/,2 rceil).

Algorithm Time Complexity Cheat Sheet

RECURRENCE(T(n))EXAMPLE
(T(n) = T(n,/,2) + 1)(sim lg n)binary search
(T(n) = 2 T(n,/,2) + n)(sim n lg n)mergesort
(T(n) = T(n-1) + n)(sim frac{1}{2} n^2)insertion sort
(T(n) = 2 T(n,/,2) + 1)(sim n)tree traversal
(T(n) = 2 T(n-1) + 1)(sim 2^n)towers of Hanoi
(T(n) = 3 T(n,/,2) + Theta(n))(Theta(n^{log_2 3}) = Theta(n^{1.58...}))Karatsuba multiplication
(T(n) = 7 T(n,/,2) + Theta(n^2))(Theta(n^{log_2 7}) = Theta(n^{2.81...}))Strassen multiplication
(T(n) = 2 T(n,/,2) + Theta(n log n))(Theta(n log^2 n))closest pair


Master theorem.

Let (a ge 1), (b ge 2), and (c > 0) and suppose that(T(n)) is a function on the non-negative integers that satisfiesthe divide-and-conquer recurrence$$T(n) = a ; T(n,/,b) + Theta(n^c)$$with (T(0) = 0) and (T(1) = Theta(1)), where (n,/,b) meanseither (lfloor n,/,b rfloor) or either (lceil n,/,b rceil).
  • If (c < log_b a), then (T(n) = Theta(n^{log_{,b} a}))
  • If (c = log_b a), then (T(n) = Theta(n^c log n))
  • If (c > log_b a), then (T(n) = Theta(n^c))
Remark: there are many different versions of the master theorem. The Akra–Bazzi theoremis among the most powerful.

Last modified on September 12, 2020.
Copyright © 2000–2019Robert SedgewickandKevin Wayne.All rights reserved.